Detector Health Report

Tyler Lemon

Detector Support Group

April 4, 2018

Contents

- Detector overview
- Monitoring systems
- Temperature monitoring
- Humidity monitoring
- Gas system overview
- Gas system monitoring
 - Nitrogen flow
 - Air pressure
 - Airflow
 - Differential pressures
- Scalers
- Typical Values
- Conclusion

Ring-Imaging Cherenkov Detector Overview

- Installed on Forward Carriage in Sector 4.
- Uses PMTs to detect Cherenkov light generated by charged particles passing through aerogel.
- Number of PMTs required reduced by using spherical mirrors.
 - Mirrors reflect light generated by particles with larger incident angles into PMTs.

Spherical Mirrors with reflection of Aerogel tiles.

PMTs on Electronic Panel

RICH Monitoring Systems - EPICS

- Data read by IOC from electronics readout.
- Monitors voltages, currents, FPGA temperatures, and scaler counts.
- Information displayed in *clascss*.
- Uses software to send inhibit signal to CAEN to disable HV/LV.

RICH Overview and Scalers Map EPICS screens

RICH Monitoring Systems – Hardware Interlock System

- Network-independent cRIO-based system that monitors detector conditions using independent sensors.
 - 32 RTDs
 - 32 humidity sensors
 - two nitrogen flow meters
 - two cooling air flow meters
 - two differential pressure transducers
 - one pressure transducer for cooling buffer tank pressure
- LabVIEW code for interlock system developed by DSG.
- Uses a relay connection to disable HV/LV using CAEN's front panel interlock connection.

Connect to System	Connected to Interlock System? Connected	RICH Hardware Interlock System - User Int	erface System Status Message E Exit Pro
Any Interlock Out of Lin	nit? HV Enable Status LV I	nable Status	
ОК	HV ENABLED LV	ENABLED	
lash Status and Signal Manita			
nock status and signal monitor	Thresholds and Enable Control Setting	as Expert Control Settings Raw Data Monitoring CRUO System Monitoring	
Inte	erlock Status	Signal Monitoring	Latched Interlock Error
		A N2 Flow 1	High Error Low Error Reset Latched E
High Status	Low Status	1 18842 N2 Flow 2	
0 OK	OK N2 Flow -# 1	2 4322 Air Flow 1	O OK OK NZ FIOW 1 OFF
1 OK	OK N2 Flow 2	3 399 671 Air Flow 2	1 OK OK N2 Flow 2
2 OK	OK Air Flow 1	4 117.997 Air pressure	2 OK OK Air Flow 1
3 OK	OK Air Flow 2	5 24 State Temperature 1	3 OK OK Air Prov 2
4 OK	OK Air pressure	6 25.7991 Temperature 2	r or or Temperature 1
5 OK	Temperature 1	7 25.7380 Temperature 3	6 OK OK Temperature 2
6 OK	Temperature 2	8 23.9154 Temperature 4	7 OK OK Temperature 3
7 OK	Temperature 3	9 271983 Temperature 5	8 OK OK Temperature 4
8 OK	Temperature 4	10 243764 Temperature 6	9 OK OK Temperature 5
JO OK	Temperature S	11 253577 Temperature 7	10 OK OK Temperature 6
10 04	Temperature o	12 June 12 Temperature 8	11 OK Temperature 7
12 04	OK Temperature 9	12 Temperature 9	12 OK OK Temperature 8
12 04	Temperature s	14 13 Temperature 10	13 OK OK Temperature 9
14 OK	OK Temperature 10	16 21947 Temperature 11	14 OK OK Temperature 10
15 OK	OK Temperature 11	16 12 Mile Temperature 12	15 OK OK Temperature 11
16 OK	OK Temperature 12	17 Walls Temperature 12	16 OK OK Temperature 12
17 OK	OK Temperature 13	17 Temperature 14	17 OK OK Temperature 13
18 OK	OK Temperature 14	10 1/1/12 Temperature 15	18 OK OK Temperature 14
19 OK	OK Temperature 15	19 2010 Temperature 16	19 OK OK Temperature 15
20 OK	OK Temperature 16	1 1963	20 OK OK Temperature 16
21 OK	OK Humidity 1	21 134056 Humidity 2	21 OK OK Humidity 1
22 OK	OK Humidity 2	22 o Humidity 2	22 OK OK Humidity 2
23 OK	OK Humidity 3	23 Humidity 3	23 OK OK Humidity 3
24 OK	OK Humidity 4	24 U20/908 Humidity 4	24 OK OK Humidity 4
25 OK	OK Humidity 5	25 320222 Humidity S	25 OK OK Humidity 5
26 OK	OK Humidity 6	20 cause Humidity 6	26 OK OK Humidity 6
27 OK	OK Humidity 7	27 D Humidity /	27 OK OK Humidity 7
28 OK	OK Humidity 8	28 17467 Humidity 8	28 OK OK Humidity 8
29 OK	OK Humidity 9	29 127317 Humidity 9	29 OK OK Humidity 9
30 OK	OK Humidity 10	30 Humidity 10	30 OK OK Humidity 10
31 OK	OK Humidity 11	31 0.237973 Humidity 11	31 OK OK Humidity 11
32 OK	OK Humidity 12	32 393079 Humidity 12	32 OK OK Humidity 12
33 OK	OK Humidity 13	33 1.55927 Humidity 13	33 OK OK Humidity 13

RICH Hardware Interlock's LabVIEW User Interface

Temperature Monitoring

- Temperature of electronics and detector volumes measured by built-in temperature sensors in FPGAs and interlock system RTDs.
- Typical FPGA temperature:
 - Only LV on: max ~65 °C
 - LV/HV on: max ~69 °C.

Hardware Interlock N₂ Volume Temperature History From January 16, 2018 Through March 21, 2018

Hardware Interlock N₂ Volume Temperature Statistics From January 16, 2018 Through March 21, 2018

Sensor Board	RTD	Mean [°C]	Standard Deviation [°C]
1	1	26.23	1.11
1	9	25.40	1.04
2	3	25.17	1.01
2	10	23.65	0.89
2	4	26.71	1.18
5	11	24.10	0.92
л	5	25.91	1.08
4	12	24.44	0.84
5	6	26.28	1.11
5	13	25.23	1.01
6	7	23.73	0.89
0	14	26.86	1.18
7	8	24.02	0.92
,	15	25.89	1.08
8	2	24.47	0.95
0	16	25.38	1.04
OVER	ALL	25.22	4.11

Humidity Monitoring

- Humidity monitored by interlock system sensors.
 - Honeywell HIH-4030 series humidity sensors
 - Manufacturer Accuracy Spec: ± 3.5% RH
 - JLab Measured Accuracy: ± 1.5% RH
- Low humidity achieved by purging detector with nitrogen.
 - Goal is to keep humidity under 3% RH.
- Typical humidity:
 - ~1 % RH in EP
 - ~2 % RH in N2 volume.
 - Only H5/H12 (located behind spherical mirrors) ~4% RH; reason unknown.

Humidity Monitoring – N2 Volume

N₂ Volume Humidity Statistics From January 16, 2018 Through March 21, 2018

	Sensor Board	Humidity Sensor	Mean [% RH]	Standard Deviation [% RH]	
	1	1	1.89	0.13	
	1	9	1.15	0.11	
	n	3	0.51	0.12	
	2	10	0.05	0.04	
	2	4	0.10	0.08	
	J	11	0.11	0.08	
	Л	5	3.79	0.17	
	4	12	3.73	0.16	
5	6	1.83	0.52		
	5	13	1.72	0.12	
	C	7	0.00	0.00 Bad S	ensor
	U	14	0.84	0.29	
	7	8	1.54	0.13	
	,	15	1.31	0.13	
	8	2	0.00	0.00	
	0	16	0.00	0.00	
	OVERALL Without H2 5 7 12 16		1.00	0.68	

Humidity 5 and 12 thought to be higher due to placement in RICH behind mirrors.

Humidity Monitoring – EP

★ Slightly higher humidity because both HV/LV were off, causing a lower temperature in the EP. Relative humidity is dependent on both temperature and water concentration. <u>Example:</u> At. 2% RH at 25 °C the

At, 2% RH at 25 °C the true water concentration in air is ~0.46 mg/m³. With the same water concentration, but at a temperature of 35 °C, the relative humidity is 1.2%.

EP Humidity Statistics From January 16, 2018 Through March 21, 2018

	Sensor Board	Humidity Sensor	Mean [% RH]	Standard Deviation [% RH		
		1	15.60	4.60		
	T	2	15.56	4.64		Outside EP/N ₂
	2	3	14.92	4.49		Volume behind RICH
	Z	4	0.00	0.01 Ba	d Sensor	
	2	5	0.19	0.56		-
	3	6	0.16	0.52		
	_	7	0.30	0.50		
	4	8	0.33	0.50		
	5	9	0.25	0.54		
		10	0.19	0.54		
	C	11	0.27	0.57		
	D	12	0.33	0.57		
	7	13	0.18	0.51		
		14	0.17	0.51		
		15	0.15	0.46 Ba	id Sensor	
	ð	16	23.16	6.40		Ambient

Gas System

- All components located on top deck of Forward Carriage
- Nitrogen System
 - Provides ~40 slm of nitrogen to RICH to maintain a low internal humidity
 - Upgraded valve panel assembled to allow ~120 slm total flow.
 - Upgraded panel yet to be reviewed by System Owner, Bob Miller.
- Air-Cooling System
 - Provides ~900 slm of airflow to RICH's Electronic Panel for cooling.
 - Airflow supplied by Atlas Copco compressors.

Gas System Currently In Use

Upgraded Nitrogen System Panel

- Increased flow capability
 - 2 22 slm rotameter upgraded to 0 66 slm rotameter
 - 0 20 slm flow meter upgraded to 0 80 slm flow meter

RICH Detector N2 Purge Gas System Diagram

Nitrogen Flow History From January 16, 2018 Through March 21, 2018

Air-Cooling Buffer Tank Pressure History

From January 16, 2018 Through March 21, 2018

Instability of pressure reading caused by oscillations in buffer tank pressure due to compressor's on-off cycle.

One Hour of MYA Pressure Data

Pressure oscillates between ~120 psi and ~65 psi because of operation deadband set on compressor.

Compressor turns on when its output pressure drops below 104 psi and turns off when pressure increases to 113 psi.

Air Flow History

From January 16, 2018 Through March 21, 2018

Airflow 1 is set to 500 slm and Airflow 2 is purposely set lower to 400 slm. This it to flow more air to the portion of the EP that tends to be the highest temperature.

One Hour of MYA Airflow Data Plotted With Air Pressure

Airflow 1 is more sensitive to changes in air pressure because of higher flow rate.

Air Pressure – Airflow Correlation Plot

Differential Pressure Transducers

- Two pressure transducers installed to measure:
 - Pressure differential between nitrogen volume and atmosphere
 - Pressure differential between nitrogen volume and EP.
- Goal is to have nitrogen volume over-pressured in relation to EP and atmosphere.
 - Prevents external air from leaking into nitrogen volume.
- Measurements indicate that EP and N2 Volume are at a similar pressures.
- No correlation observed between differential pressures and internal humidity readings.

Differential Pressure History From March 15, 2018 Through March 29, 2018

Differential Pressure History From March 15, 2018 Through March 29, 2018

Pressure Differential Between	Mean [IWC]	Standard Deviation [IWC]
N ₂ Volume – ATM	0.255	0.056
N ₂ Volume – EP	0.002	0.068

Mean and standard deviation in table calculated from raw data

N2 Volume – Atmosphere Differential Pressure Correlation Plot for N₂ Volume Sensors

N2 Volume – EP Differential Pressure Correlation Plot for N₂ Volume Sensors

N2 Volume – Atmosphere Differential Pressure Correlation Plot for EP Sensors

April 4, 2018

N2 Volume – EP Differential Pressure Correlation Plot for EP Sensors

Humidity Sensors not installed inside EP are not shown.

Scalers

- Scalers help give a real-time indicator of health of electronics.
 - Scalers give count of events detected per seconds.
 - If counts increase, PMT may be starting to have issues.
- Scaler counts are correlated to beam current.
 - Higher beam current, higher scaler counts.

Scaler Averages vs. Beam Current

PMT 166 has higher scalers because more particles go through center of EP than at its edges.

Scalers Problem

- Scalers for some PMTs read zero and do not update.
- Bad scalers most likely caused by DAQ initialization error.
 - Readout electronics could not determine whether tile is a 2 or 3 ASIC tile.
 - Error causes PMT data not to be read by DAQ.

Scalers Problem Solution

- Cycle of LV to RICH and restart of DAQ to reinitialize RICH electronics.
 - Temporary solution; debugging will be done after Spring 2018 Physics Run.
- Present course of action:
 - Monitoring scalers to see if same tile continuously has issues.
 - Could indicate hardware problem with tile or its DAQ connections.
 - Monitoring logbook to note patterns in DAQ starts and PMT scaler issues.
 - If PMT scalers only freeze when DAQ is started, could indicate problem with RICH DAQ initialization.

Occupancy Plots

- Plots generated by *richmon* program.
- Shows pixels hit during event.
 - 391 PMTs x 64 pixels each = 25024 total pixels.
- Two display modes:
 - Integrated counts per pixel from a set number of events.
 - Individual events.
- Can show preliminary images of Cherenkov rings.

Occupancy Plot - Integrated Count-per-Pixel

Occupancy Plot - Individual Events

Cherenkov ring drawn in by hand

Occupancy Plot - Individual Events

Cherenkov ring drawn in by hand

Interlock Sensors and Limits

	Sensor Type	Typical Value	High Limit	Low Limit	On/Off refers
FPGA Temperatures		50 – 68 °C	75 °C	N/A	electronics.
	Hardware Interlock EP RTD Temperatures	26 °C off 40 °C on	45 °C	10 °C	Signals with no interlocks have
	EP Humidity	0 – 4 % RH off <1 % RH on	30 % RH	0 % RH	limits noted as N/A.
	N2 Volume RTD Temperature	26 °C	30 °C	10 °C	
	N2 Volume Humidity	< 2 % RH H5/H12: <4 % RH	5 – 7 % RH	-1 % RH	
	Airflow 1	500 slm	573 slm	400 slm	
	Airflow 2	400 slm	500 slm	300 slm	
	N2 Flow 1 and 2	20 slm	50 slm	15 slm	
Buffer Tank Pressure		65 – 120 psi	160 psi	40 psi	
	N2-ATM Differential Pressure	0.25 IWC	N/A	N/A	
	N2-EP Differential Pressure	~0.002 IWC	N/A	N/A	
	Scaler Counts	Varies with beam current	N/A	N/A	

Detector Specifications

Electronics Voltages			Aerogel			Mirrors		
	Tiles	138		Index of Refraction	~1.05		Quantity	10
High	Set Value	1000 V 800 μΑ		Quantity	38 total (24 whole 14 partial)	Spherical	Radius of Curvature	~2.7 m
Voltage	Read-back Value	~1000 V 3-PMT Tiles: ~620 μA 2-PMT Tiles: ~325 μA	2-cm Tiles	Number of			Reflectivity	~90%
				Layers	1	Planar	Quantity	5 lateral
	Groups 40	2 Πίπτητας. 525 μ/τ		Dimensions	10 cm x 10 cm x 2 cm			4 front
		40		Index of			Reflectivity	~90%
Low	Set Value	5.2 V		Refraction	~1.05			
Voltage	Read-back	~5.20 V ~3.15 A	3-cm Tiles	Quantity	68 total (52 whole, 16 partial)			
			Number of Layers	2				

Dimensions 10 cm x 10 cm x 3 cm

Conclusion

- RICH detector is in good health
 - Humidity under 3%
 - FPGA temperatures under 70 °C
 - Over-pressured in relation to atmosphere
- Items to improve upon:
 - Increase pressure in N2 Volume so it is more over-pressured in relation to EP.
 - Improve reliability of scaler readout.

Thank You